

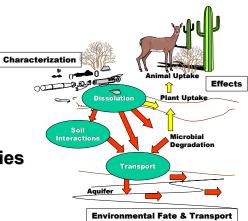
The Challenge

Tools needed to integrate the two are limited.

The database upon which to develop those tools is also limited.

Military Readiness

- Training Range Activities (HE)
 - Artillery/Mortar
 - Antitank rocket range
 - Tank firing range (Battleruns)
 - Hand grenades
 - Multi-Use ranges
 - Air to ground bombing/missiles
 - Ground to air missiles
 - Demolition/"blow-in-place"
 - Mines
 - Naval munitions
- Weapon Systems Testing



2

Environmental Stewardship

- Ground water
- Soil
- Ecosystems
- Threatened and endangered species
- Public health

Origins of Explosives in the Environment

- Manufacturing of explosives
- "Load-and-Pack" operations, filling munitions with explosives
- Live-fire soldier training
- · Weapon systems testing
- Demolition of munitions/UXO
- Demilitarization of munitions
- Commercial enterprises

5

Contaminants of Concern

- TNT
- RDX
- HMX
- DNTs
- Tetryl
- Ammonium picrate
- White phosphorus

- Others
 - Perchlorate
 - Nitroglycerin
 - PETN
 - Degradation and transformation products
 - Components of smokes, obscurants, pyrotechnics
 - Heavy metals
 - Related organic compounds

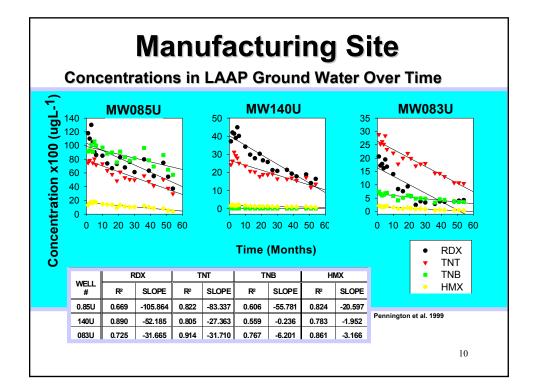
TNT Transport/Degradation

- Transformation products are common when TNT is present
- Attenuation by soils is significant
- Transport occurs when volume of soluble contamination exceed capacity of soil to attenuate, e.g., manufacturing sites

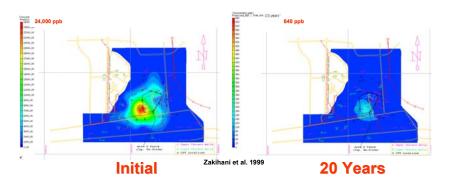
NONHYDROLYSABLE BONDS

RDX Transport/Degradation

- Mineralization is minimal in the vadose zone, but enhanced under anaerobic conditions
- Some transformation products are undesirable
- Readily transported from soil to ground water
- RDX is readily taken up by some vegetation

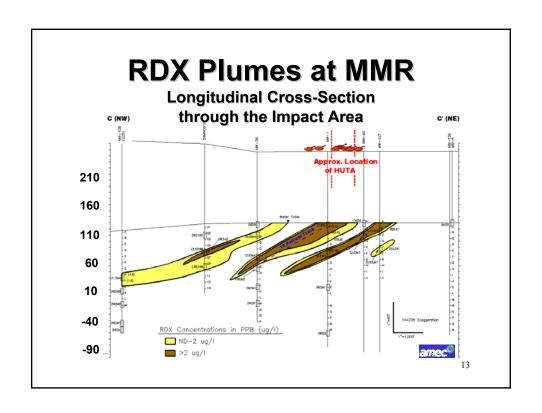

McCormick, Feeherry, and Levinson 1976

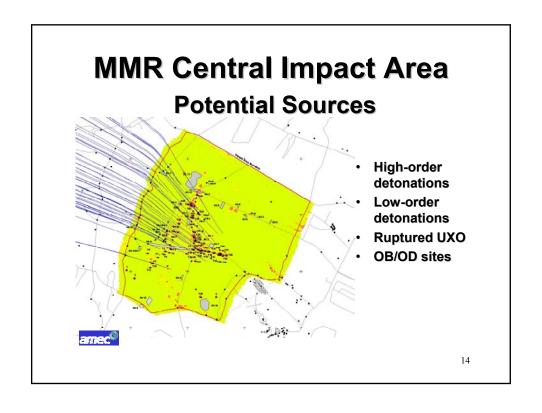
Status of Explosives Contamination


Manufacture and load-and-pack sites

- Focus of clean-up efforts since early 1980s
- Most heavily contaminated soils and ground water have been treated, or are currently under treatment
 - Incineration · Composting
 - Pump-and-treat ⋅ In situ
 - Monitored natural attenuation
 - Point sources; originally aqueous

Manufacturing Site: LAAP Ground Water Model RDX Plume


11


Massachusetts Military Reservation

- 21,000-acre facility located on Cape Cod, MA
- Approximately 14,000 acres of Training Range and Impact Area
- Sits on the Cape Cod Aquifer, a sole source of drinking water for 148,000 permanent and 425,000 seasonal residents
- Soil is highly permeable
- · Groundwater exceedance of the

Lifetime Health Advisory of 2 ppb for RDX and TNT (one site)

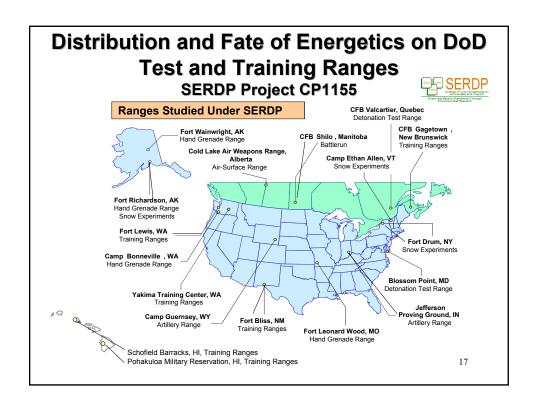
- · Soil contaminants include concentrations (ppm) up to
 - 43 RDX, 10 HMX, 17 2,4DNT, 130 nitroglycerin, transformation products of TNT, other organics, and metals
- EPA Order (1997) required
 - Suspension of training
 - Elimination of current and potential sources to aquifer
 - Monitoring plan to assess compliance
 - Restoration of areas disturbed by the action

Massachusetts Military Reservation

- **Investigations for Ground Water Study Program (1997-2002)**
 - 2,041 profile samples from 171 soil borings
 - 1,014 wipe samples from UXO
 - 3,495 ground water profile samples from 256 borings
 - 5,233 groundwater samples from 651 monitoring wells at 256 locations
 - 56 documents in 2002 alone
- **Ground water contamination**
 - Three source locations: Central Impact Area, Demolition Area 1, and J Range
 - Contaminants of Concern: RDX, HMX, 4ADNT, 2ADNT, TNT, 2,4DNT, perchlorate
- **Ongoing activities**
 - Hydraulic containment at Demolition Area
 - Feasibility Study for Central Impact Area
 - Update of regional ground water model
 - Evaluation of UXO as ground water contamination source
 - Further characterization of J Ranges and other selected sites

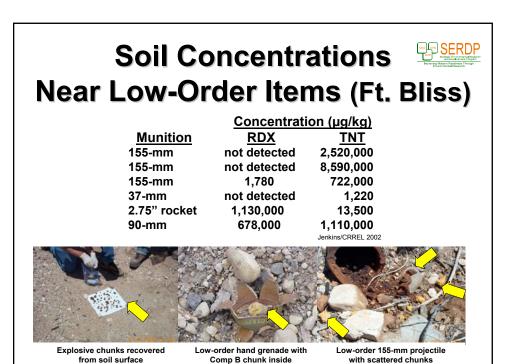
SERDP

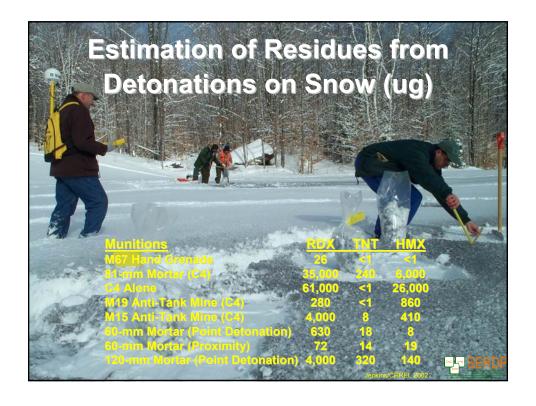
Distribution and Fate of Energetics on **DoD Test and Training Ranges**

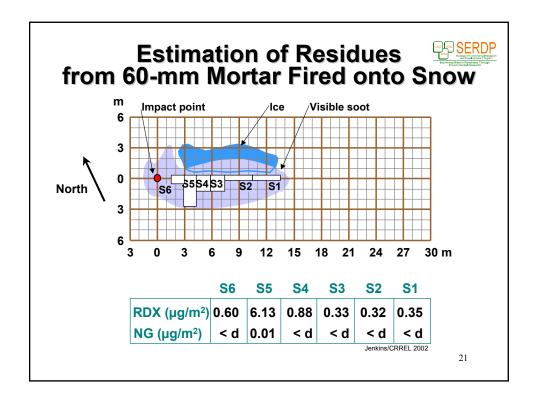

SERDP Project CP1155

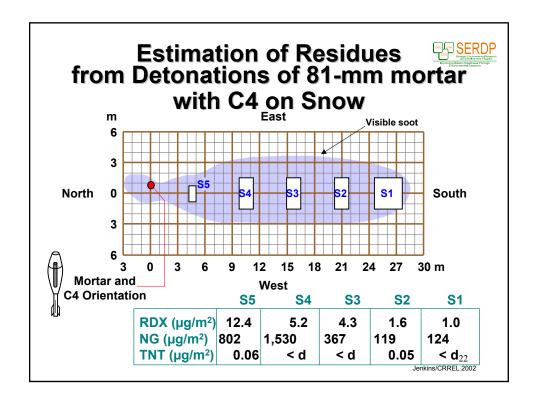
- Range characterization
 - Sampling of residues on active ranges
- Defining residues from controlled detonations
 - High-order detonations on snow
 - Blow-in-place on snow
 - Controlled low-order detonations
- Residues at firing points

Residue Deposition from Control Operational Use of Munitions

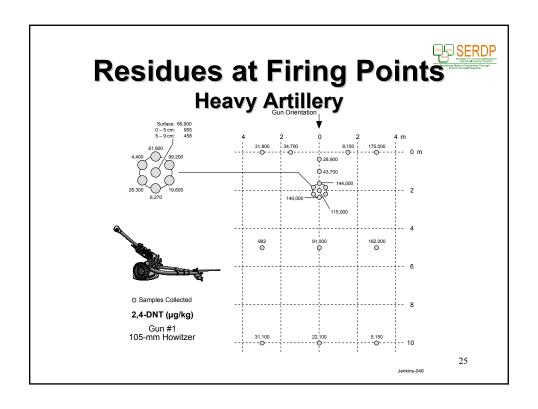

RDX (grams)


Munition	Mass in item	Residue
M67 hand grenade	110	0.000025
105-mm howitzer	1,300	0.000100
81-mm mortar	560	0.001000
60-mm mortar	220	0.000074
40-mm grenade	19	0.001600
120-mm mortar	1,800	0.004100
	•	Jenkins/CRREL 2002





Estimating Residues from Controlled Low-Order Detonations


- 60- and 81-mm mortars
- 105- and 155-mm artillery projectiles

Residues at Firing Points

Propellant residues can be significant at firing points of heavy artillery

Residues at Firing Points

Certain rockets can deposit a continuous trail of residues from firing point to impact and behind the gun

Residues at Firing Points

Perchlorate is a potential contaminant of concern for certain rockets

Titans on the Space Shuttle

- · Likely to be common on ranges
- No regulatory limits are set; however, may be imminent
- Regulatory limits may be in the low ppb range (e.g. 1 ppb)
- May also be a problem in BIP (e.g., spotting charge in lowimpact training rounds, or LITR)

27

Status of Explosives Contamination

Live-fire training and weapon systems testing ranges

- Massachusetts Military Reservation (MMR)
- SERDP Project CP1155
- Characterization
- Fate and Transport
- Environmental Effects
- Challenges
- What we know
- Future directions

Range Characterization/Remediation Challenges of Source and Scale

Expansive size

Extreme spatial heterogeneity

Diverse uses over time

Variable munitions performance low-order

Blow-in-place practices

Various climates

Characterization What we know

- Distribution of explosives residues
 - Random sampling is least effective
 - Integrated sampling approaches are needed
- Sample handling/analysis
 - Efficient compositing and subsampling techniques are critical
 - Chemical detection limits must be low for adequate characterization
- Characteristics of residuals are specific to range firing activities

Characterization What we know

Concentrations of residues from high-order detonation are limited

Low-order detonations are significant point sources of contamination

Firing points as well as impact points can become contaminated

31

Characterization What we know

Blow-in-place demolition of UXO can contribute significant contamination

Climate can exert significant effects on the character of residues

Characterization What we know

- RDX is a significant contaminant of concern on live-fire ranges
- TNT poses less threat to ground water than RDX
- Propellant residues at firing points can be significant

33

Characterization Future Directions

Characterize air force and naval ranges

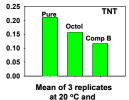


Continue characterization of residues at firing points

Characterization Future Directions

Refine estimates of residues from low-order detonations

Characterization Future Directions


- Expand range characterization database
- Model the distribution of residues associated with various range uses
- Synthesize data for estimation of source term to use in predictive models and risk assessments
- Develop environmentally safe demolition procedures

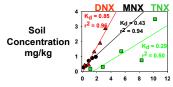
Fate and Transport Challenges

- Corrosion rate
 - Munitions casings
 - Safety
 - Explosives residues

Dissolution rate ug/cm²/sec

150 rpm stirring rate

Dissolution rate
 Compositions


70% HMX, 30% TNT
Comp B
59.5 % RDX, 39.5% TNT, 1% wax

37

Fate and Transport Challenges

- Transport
 - Various soil/climatic settings
 - Marine environments
 - Degradation products

Solution Concentration, mg/L

- Interactions with soils and marine sediments
 - Soil adsorption and desorption
 - Transformation
 - Degradation

Fate and Transport What we know

Soil interactions

- Initial release from compositions in soils tends to be locally very high, approaching temperature dependent saturation
- Soil adsorption will not significantly limit transport
- Compositions dissolve more slowly than individual components
- Transformation is slow and limited except for TNT, which transforms readily to mono amino products
- TNT transport is limited by covalent bonding of transformation products to soils
- Explosives residues are resistant to microbial degradation under conditions typical of ranges
- RDX is readily transported

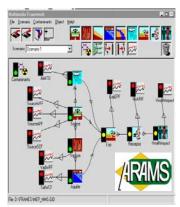
NONHYDROLYSABLE BONDS

1

Fate and Transport What we know

Corrosion

- Corrosion rates in most environments are slow
- Casings on many high-load munitions are thick
- Some UXOs have been in place for extended time periods


Climate/Hydrogeology

- TNT residues degrades via photolysis
- RDX is the explosive of greatest concern in ground water

Fate and Transport Future Challenges

- Process descriptors needed
 - Propellants
 - Smokes and obscurants
- Characterizing corrosion on bottom of UXOs
- Significance of non-HE organics
- Spatial models of the source term
- Transport models
- New generation explosives

41

Effects What we know

- Toxicity varies with species (data are limited)
- Mono amino transformation products of TNT are typically more toxic than TNT
- RDX is readily bioaccumulated by plants
- TNT is rarely translocated from roots

Effects Future challenges

- Modeling exposure
- · Defining representative receptor species for testing
- Filling data gaps for munitions compositions, explosives degradation products, and new generation explosives

Insect larva Chironomus tentans

Amphipod
Hvalella azteca

Fathead minnow Pimephales promelas

43

Challenges Unique to Live-Fire Training Ranges

What to monitor:

- Number of rounds fired and locations (How much contamination is/will be out there?)
- Number of low-order detonations (How do you monitor these "hot spots"?)
- Contamination in soils resulting from low-order detonations (Where?)
- Contamination in soils resulting from firing point residues (Where?)
- Contamination in ground water resulting from range activities (Where do you put the wells?)
- · Contamination of air
- · Contamination of surface water
- Ecological impacts (What species are sentinel? In which regions of the country?)

How to monitor:

- Access to
 - Ranges
 - Contaminated soils (finding it)
 - Contaminated ground water
 - Receptors
- Sustaining monitoring systems
 - Stability against blasts
 - Stability against range fires
 - Safety
- · Scale and heterogeneity
 - Representativeness
- Release of data
 - Sensitivity levels
 - Whose data are they?

Managing the Problem

- Synthesis
 - Environmentally "harmless" residues
 - "Trackable" residues
 - "Self-destructing" residues
- Range Practices
 - Tracking duds and low-order detonations
 - Removing/remediating duds and low-order detonations
 - Tracking firing positions for characterization and remediation
 - Improving blow-in-place procedures
 - Managing range use to minimized residues

45

The direct approach to cleanup

